LowEx

- High efficient thermal energy supply in zero energy buildings

Maria Myrup

Skanska Teknikk - Klima, Energi og Bygningsfysikk

Ideally: «No installations»

But generally too great compromises regarding robustness, indoor air quality and flexibility

Wishes for the project

Idea

- The idea of the project is to develop a new total-concept for thermal energy supply in zero-energy-buildings and plus-houses, <u>with a performance factor to be 2-2,5</u> <u>times better than state-of-the-art of today.</u>
- The demand for sustainable and energy-efficient buildings with innovative and smart solutions is growing rapidly.
- Buildings in operation produces as much or more energy than they use, these buildings will be a key contribution to reduce energy use worldwide – and by this also to reduce greenhouse gas emissions.

Ambition

- To reach:
 - "Seasonal Coefficient of Performance" (SCOP) of 8-10
 - "Seasonal Energy Efficiency Ratio" (SEER) of 80-100
 - 80 % reduction in power demand for heating and cooling
 - Compared to buildings build regarding current building codes
 - Low total costs

The project idea

- To optimize - and combine

Heat pump

Heat delivery system

Energy well

Conventional and State-of-the-Art solutions (in Norway)

- NS3031:2014
 - Water based system with geothermal heat pump: COP = 2,6
 - Cooling unit with water based cooling: COP = 2,5-2,7
- Powerhouse Kjørbo
 - Geothermal heat pump: COP = 4,2
 - − Free cooling via energy wells: COP \approx 20-30

Norsk Standard NS 3031:2014

> ICS 01.040.91; 91.120.10 Språk: Norsk

Beregning av bygningers energiytelse Metode og data

Calculation of energy performance of buildings Method and data

Skanska Teknikk - LowEx

International: EU-project GEOTABS

		A (2010)	B (2009)	C (2011)	D (2011)	E (2010-11)
SCOP ₁	[-]	5,15	3,94	3,76	3,56	ND
SCOP ₂	[-]	4,71	ND		1,96	ND
SCOP ₃	[-]	-	ND		1,59	ND
SCOP ₄	[-]	4,38	ND		1,23	ND
SEER ₁	[-]	-	7,54	10,74	-	ND
SEER ₂	[-]	49,70	ND		3,72	ND
SEER ₃	[-]	20,95	ND		2,89	ND
SEER ₄	[-]	-	ND		2,08	ND

Theoretical background for LowEx

- Carnot COP
 - Ideal compression cycle without losses in the system
 - In practice, lot of parameters have a negative influence on the efficiency
- Real COP
 - Product of the Carnot COP and the system efficiency (η_{ex})

$$COP_{CARNOT} = \frac{T_{cond}}{T_{cond} - T_{evap}}$$

$$\eta_{ex} = \frac{COP}{COP_{CARNOT}}$$

Skanska Teknikk - LowEx

Estimated SCOP

Estimated real COP for a heat pump calculated in the heating season

Outside temperature	-20 °C	-15 °C	-10 °C	-5 °C	0 °C	5 °C	10 °C
Desired flow temperature	29,3 °C	27,8 °C	26,4 °C	25,0 °C	23,5 °C	22,0 °C	20,4 °C
Estimated brine temperature	0,0 °C	1,0 °C	2,0 °C	4,0 °C	6,0 °C	7,0 °C	8,0 °C
Theoretical COP, COP _{carnot}	10,3	11,2	12,3	14,2	16,9	19,7	23,6
Calculated «real» COP	5,2	5,7	6,2	7,2	8,5	9,9	11,9

- What if it is possible with an average brine temperature of 8 °C and 24 °C flow temperature in the heating season?
 - COP_{carnot} = 18,6
 - With η_{ex} of 0,5 => COP = 9,3

Skanska Teknikk - LowEx

Work packages

- WP1: Energy well system
- WP2: Heat pump and heat exchanger system
- WP3: Heating and cooling delivery system
- WP4: Heating and cooling balance for the building
- WP5: Pilot buildings

Partners

- Skanska Norway KEB
- Omsorgsbygg KF
- Avantor
- Lund University (Chalmers)
- ABK
- NIBE